A central limit theorem for mixing stationary point processes
نویسندگان
چکیده
منابع مشابه
Central Limit Theorem for Stationary Linear Processes
We establish the central limit theorem for linear processes with dependent innovations including martingales and mixingale type of assumptions as defined in McLeish [Ann. In doing so we shall preserve the generality of the coefficients, including the long range dependence case, and we shall express the variance of partial sums in a form easy to apply. Ergodicity is not required.
متن کاملA Class of Stationary Processes and a Central Limit Theorem.
We assume without loss of generality that E{Xn} = 0. Let rs = i£{XnXn+s}. Then r8 = / I T edF(h), where F(X) is the spectral distribution function of the process. In §3 the spectral distribution function of any process of the form (2.2) is shown to be absolutely continuous. Finally it is shown in §4 that under some additional assumptions on the moment structure of the process the central limit ...
متن کاملAlmost Sure Central Limit Theorem for Strictly Stationary Processes
On any aperiodic measure preserving system, there exists a square integrable function such that the associated stationary process satifies the Almost Sure Central Limit Theorem. Introduction The Almost Sure Central Limit Theorem (ASCLT), first formulated by Lévy in [9], has been studied by various authors at the end of the eighties ([6], [3], [10], [8]). This theorem gives conditions under whic...
متن کاملLocal Central Limit Theorem for Determinantal Point Processes
We prove a local central limit theorem (LCLT) for the number of points N(J) in a region J in Rd specified by a determinantal point process with an Hermitian kernel. The only assumption is that the variance of N(J) tends to infinity as |J | → ∞. This extends a previous result giving a weaker central limit theorem (CLT) for these systems. Our result relies on the fact that the Lee-Yang zeros of t...
متن کاملA functional central limit theorem for integrals of stationary mixing random fields
We prove a functional central limit theorem for integrals ∫ W f(X(t)) dt, where (X(t))t∈Rd is a stationary mixing random field and the stochastic process is indexed by the function f , as the integration domain W grows in Van Hove-sense. We discuss properties of the covariance function of the asymptotic Gaussian process.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1978
ISSN: 0304-4149
DOI: 10.1016/0304-4149(78)90010-8